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Abstract
By using the dielectric relaxation method proposed recently by Casalini and Roland
(2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural α-relaxation times
deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state
τα is so long that it cannot be measured but τβ , which is usually much shorter, can be directly
determined. The method basically takes advantage of the connection between the α-relaxation
and the secondary β-relaxation of the Johari–Goldstein kind, including a relation between their
relaxation times τα and τβ , respectively. Thus, τα of Telmisartan were determined by
monitoring the change of the dielectric β-loss, ε′′, with physical aging time at temperatures well
below the vitrification temperature. The values of τα were compared with those expected by the
coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan
because its β-loss peak is extremely broad, and the CM predicts only an order of magnitude
agreement between the primitive relaxation frequency and the β-peak frequency. We also made
an attempt to analyze all isothermal and aging susceptibility data after transformation into the
electric modulus representation. The τα found in the glass state by using the method of Casalini
and Roland in the modulus representation are similar to those obtained in the susceptibility
representation. However, it is remarkable that the stretching parameter βKWW−M = 0.51 in the
electric modulus representation gives more precise fits to the aging data than in the
susceptibility representation with βKWW = 0.61. Our results suggest that the electric modulus
representation may be useful as an alternative to analyze aging data, especially in the case of
highly polar glassformers having a large ratio of low frequency and high frequency dielectric
constants, such as the Telmisartan studied.

(Some figures in this article are in colour only in the electronic version)

1. Background of the method to determine the
structural relaxation times deep in the glassy state

Direct determination of the structural α-relaxation time τα

deep in the glassy state by standard experimental setup is not
possible simply, because it is exceedingly long and far outside
the time windows of conventional spectroscopy. Thus τα is
an unknown quantity at temperatures sufficiently lower than
Tg. However, τα together with the secondary relaxation time
τβ are relevant quantities characterizing molecular motions in
glassy state that are important for the application of amorphous
pharmaceuticals concerning storage condition and life time, as
well as guarding against crystallization [1–6]. Hence, it is

important to have some means to determine τα deep in the
glassy state. There is no problem in the case of τβ because
it is usually much shorter and can be directly determined at
temperatures way below the vitrification temperature Tg; its
change with physical aging can be monitored as well.

Recently Casalini and Roland (CR) [7] proposed a new
method to determine τα in the glassy state by exploiting the
connection between the α-relaxation and the secondary β-
relaxation of the Johari–Goldstein type. CR demonstrated for
an amorphous polymer, poly(vinylethylene), that the observed
change of the β-relaxation with physical aging can be used
to deduce the structural relaxation dynamics below Tg. They
measured the variation of the imaginary part of dielectric
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permittivity ε′′( f̃ , tag) of PVE with aging time tag at fixed
frequency f̃ , which can be successfully described by the
following equation

ε′′( f̃ , tag)

ε′′( f̃ , tag=0)
=

{
�ε′′( f̃ , tag)

× exp

[
− tag

τag

]βag

+ ε′′
eq( f̃ )

}/
ε′′( f̃ , tag=0), (1)

where ε′′
eq( f̃ ) ≡ ε′′( f̃ , tag → ∞) is an equilibrium value,

�ε′′( f̃ , tag) = ε′′( f̃ , tag = 0) − ε′′
eq is the change of ε′′

during aging, βag is the stretched exponent (βag(T < Tg) =
βKWW(Tg)), and τag is the aging time constant. For the
selected temperature, irrespective of the chosen frequency,
they obtained the same τag (the aging time constant). The
deduced values of τag turned out to be nearly the same as τα

calculated from the coupling model (CM) [8–10] predicted
relation between τα and τβ , given via the primitive relaxation
time τ0 by the following equations

τα = [(tc)−nτ0]1/(1−n), τβ ≈ τ0 (2)

where tc is about 2 ps for molecular and polymeric
glassformers and (1 − n) is the fractional exponent of
the Kohlrausch–Williams–Watts (KWW) stretched exponential
correlation function of the α-relaxation [11]

φ(t) = exp[−(t/τα)
1−n]. (3)

From this, CR concluded that ‘the behavior of the τag is
consistent with its identification with τα in the glassy state’,
and hence they successfully determined τα from τβ in the
glassy state of poly(vinylethylene). The coincidence between
the data from aging experiment τag and values of α-relaxation
times calculated from the coupling model justifies the ‘use of
aging induced changes in JG relaxation to follow the structural
dynamics in the glassy state’, and ‘a correlation between α and
JG relaxations persist even in the glassy state’ [7].

In view of the success of the method proposed by Casalini
and Roland, we applied it to Telmisartan (TEL), a drug
commonly prescribed to patients with high blood pressure.
TEL has a well-separated Johari–Goldstein (JG) type β-
process. Thus, the coupling model relation (equations (2)) can
be used to predict α-relaxation times τCM

α from τβ in the glassy
state.

2. Experimental details

2.1. Material

Telmisartan was supplied from Dr Reddy’s Laboratories
Limited (India, CAS No. 14470-48-4, purity � 98%) and
received as a white crystalline powder. Telmisartan is properly
described chemically as 4′-[(1,4′-dimethyl-2′-propyl[2,6′-bi-
1H-benzimidazol]-1′-yl)methyl]-[1,1′-biphenyl]-2-carboxylic
acid. Its empirical formula is C33H30N4O2, its molecular
weight is 514.63 g mol−1, and its chemical structure is
presented in figure 1. The obtained material was used without
further purification.

2.2. Method—broadband dielectric spectroscopy (BDS)

For the dielectric aging experiment we used an analogous
setup and sample cell as described in [12]. The method of
preparation amorphous TEL was also exactly the same. The
sample was aged at a few different temperatures for up to five
days. The temperature was kept stable to better than 0.1 K.

3. Results and discussion

In figure 1 we present dielectric loss spectra of TEL, measured
at atmospheric pressure above (panel (a)) and below (panel (b))
the glass temperature. The glass transition temperature Tg was
defined as the temperature at which the dielectric relaxation
time τα is equal to 100 s. By extrapolating the Vogel–Fulcher–
Tammann fit to τα obtained from the loss peak frequencies for
T � 405.15 K down to lower temperatures, the value of Tg

is 400.3 K [12]. For the sake of clarity, the dc-conductivity
has been subtracted from the measured dielectric loss in the
spectra shown above Tg. The dielectric α-loss peak can only
be seen in the dielectric spectra collected at temperatures 5 K
or more above Tg. The secondary β-relaxation is barely visible
in the ε′′( f ) spectra at temperatures just above Tg because its
amplitude is small. Below Tg, it appears as a well defined
β-peak albeit extremely broad. At the lowest temperatures,
another faster secondary process (designated as γ ) appears.
Unfortunately it cannot be characterized because it did not
show up completely within the experimental window3.

We superpose the α-loss peak part of ε′′( f ) obtained at
temperatures from 409.15 up to 459.15 K at ambient pressure
by shifting the data at the higher temperatures to superpose
them together with the unshifted data at 409.15 K. The good
superposition of the α-loss peak part indicates that the shape
of the structural peak is practically invariant with temperature
change (see figure 2 inset). In other words, time–temperature
superposition holds in this temperature range. If we assume
that the frequency dispersion of the α-loss peak continues to
be the same at all temperatures below 409.15 K, where the
peak frequency is at about 2 × 10−1 Hz, down to 373.15 K,
deep in the glassy state, then we can approximately construct
the ε′′( f ) at 373.15 K by shifting the measured data of ε′′( f )

at higher temperatures horizontally to superimpose them. This
was carried out with the ε′′( f ) data at four temperatures higher
than 373.15 K, including 409.15 K, and the constructed and
supposedly complete ε′′( f ) data at 373.15 K is shown in
the main part of figure 2. The black solid line represents
the imaginary part of the one-sided Fourier transform of the
time derivative of the KWW function in equations (2) with
(1 − n) ≡ 0.61. This is actually the same KWW function
that fits the α-loss peak at 409.15 K because of the manner in
which the loss peak at 373.15 K was artificially constructed.
The solid green line represents the fit by the Havriliak–Negami
(HN) function. The main panel of figure 2 clearly shows
that the KWW function cannot describe the data at higher

3 Since in this paper we would like to concentrate on the prediction of the
structural relaxation times in the glassy state of TEL, here we are giving only
the more important facts about the molecular dynamics of TEL. For detailed
analysis of the molecular dynamics of the drug we would like to referred
readers to our previous publication [12].
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Figure 1. Dielectric loss spectra of TEL obtained on cooling at ambient pressure ( p = 0.1 MPa) [11]. The panel (a) presents dielectric loss
above the glass transition temperature between temperatures 469.15 and 403.15 K, after subtracting the conductivity, whereas panel (b) is in
the glassy state. Above both panels we present the chemical structure of TEL.

Figure 2. Left panel [11]—in the inset, we superpose the α-loss peak part of ε′′( f ) obtained at temperatures from 409.15 up to 459.15 K at
ambient pressure by shifting the data at higher temperatures to superpose them all together with the unshifted data at 409.15 K. A good
superposition of the α-loss peak part is obtained. In the main figure, assuming the shape of the frequency dispersion of the α-loss peak part of
ε′′( f ) is the same at 373.15 K, deep in the glassy state, as at 409.15 K, where the peak frequency is at about 2 × 10−1 Hz, the ε′′( f ) data at
four temperatures higher than 373.15 K, including 409.15 K, are shifted horizontally to form a master α-loss peak. The black solid line
represents the KWW fit with (1 − n) ≡ βKWW = 0.61. The solid green line represents the Havriliak–Negami fit. Right panel—static
permittivity, high frequency permittivity and dielectric strength, (�ε = εs − ε∞) as a function of temperature in the supercooled state of TEL.

frequencies as well as the HN function. However, the less
satisfactory fit by the KWW function looms large only in the
plot of log ε′′( f ) versus log f , and the deviation at higher

frequencies shows up as an apparent excess wing. However,
in a semi-log plot of ε′′( f ) against log f , the discrepancies at
high frequencies are actually small and could be contributed by
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a faster process in the evolution of dynamics from the local β-
relaxation to the cooperative α-relaxation. Although a better
fit to the structural relaxation peak at higher frequencies is
obtained by the empirical HN function, it does not necessarily
have a fundamental physical meaning superior to that of the
KWW fit. In the supercooled liquid state of TEL the exponents
αHN and βHN of the HN fits have nearly constant values of
αHN ≈ 0.92 and βHN ≈ 0.5.

From the resolved β-loss peaks in the glassy state and at
temperatures slightly above Tg, their peak frequencies fβ and
the corresponding relaxation times τβ have been determined.
The Arrhenius temperature dependence of τβ in the glassy
state has been determined by 1/(2π fmax). Its activation
energy Eβ has the considerably large value of 81.8 kJ mol−1,
which suggests that the β-relaxation involves the motion of
the entire TEL molecule, and satisfies one of the several
criteria for identifying the β-relaxation as the universal Johari–
Goldstein (JG) β-relaxation of TEL [13]. Figure 3 shows the
presence of the β-relaxation as a broad shoulder in the ε′′( f )

spectrum at 405.15 K. The primitive frequency f0 ≡ (1/2πτ0),
calculated by equations (2), serving as an estimate of fβ is
located within the broad shoulder, and hence this supports
the observed β-relaxation of TEL being the JG process. The
black dotted line shown in figure 3 is a fit to the shoulder by
a symmetrical Cole–Cole function. The peak frequency of
the Cole–Cole function is slightly less than 1 decade higher
than f0, but the width of the Cole–Cole fit is so broad that it
is meaningless to stress the difference. Besides, the various
correlations and connections exhibited by the JG relaxation to
the α-relaxation found experimentally [13–17] rule out the JG
process being represented in the loss spectrum as an additive
contribution to the α-relaxation suggested by the Cole–Cole
fit. Furthermore, the equation involving Eβ and the prefactor
τ∞ in the Arrhenius dependence of τβ given by [18]

Eβ/RTg = 2.303(2 − 13.7n − log τ∞) (4)

can be used as another test if the β-process is the JG secondary
relaxation. The left side of the above equation is equal to 24.57,
whereas the right side gives 28.89. Taking into consideration
the large uncertainties involved in the determination of τβ , the
comparable values obtained from the left and right sides serve
as further evidence that the β-process is the JG relaxation of
TEL. Moreover, the ratio Eβ/RTg = 24.57 for TEL is in good
agreement with the value of 24 found by Kudlik et al [19] for
the secondary relaxation in several glassformers.

3.1. Aging experiment

The TEL sample was aged and the change of the β-loss peak
was observed at several chosen temperatures: 393.15, 373.15,
353.15 and 333.15 K. For the sake of clarity, in this paper we
will present the results of the aging experiment only for one
arbitrarily chosen temperature. Figure 4(a) shows the ε′′( f )

dependence at 373.15 K for different aging times. Under this
condition, only the β-peak is observed within the experimental
frequency window. With an increase in aging time tag, the
glass is further densified and, consequently, the amplitude of
local motion and hence the intensity of the β-loss is reduced.

Figure 3. Dielectric loss of TEL versus frequency at 405 K under
atmospheric pressure. The arrow indicates the location of the
calculated frequency f0 of the primitive process.

The peak frequency of the β-loss however remains practically
unchanged. Consequently, the separation of the α-relaxation
from the β-relaxation increases on aging, and in the context
of equations (2) of the coupling model this means that the
coupling parameter n ≡ (1 − βKWW) must increase on aging.
We shall return to this point later.

Similar changes were obtained for other temperatures,
although at lower temperature the system needs more time
to approach the equilibrium value of ε′′. For three fixed
frequencies we plot ε′′( f̃ , tag) dependences normalized by the
factor ε′′( f̃ , tag = 0), as shown in figure 4(b). To describe
the ε′′( f̃ , tag) dependences we used the stretched exponential
function proposed by Casalini and Roland. The best fits of
equation (1) are displayed as black solid lines. To fit the data
we used a fixed value of the stretching parameter βag = 0.61,
as determined from the fitting of the structural relaxation peak
above Tg. Similar to what was done for PVE, we have assumed
that the shape of the α-peak does not change below the glass
transition temperature (βag(T < Tg) = βKWW(Tg) = 0.61).
It is worth pointing out that the fitting function with fixed
βag = 0.61 does not describe the experimental data precisely
(see figure 4(b)).

For the three sets of data presented in figure 4(b) (at
different frequencies) we get almost the same τag, which
suggests that the results from these analyses are frequency
independent. To ensure that τag does not change considerably
during the aging experiment, the data were divided into few
intervals (covering, overlapping and exceeding the whole
time range of the experiment) and simultaneously fitted to
equation (1). We allowed τag to vary independently. As it
turned out, the value of τag for different intervals does not
change that much (within experimental error). The same
analyses were also made for the other three temperatures. The
τag(1/T ) dependence is shown in the relaxation map of TEL
(figure 5—red stars).

In addition, to get information about the structural
relaxation times below Tg, we also adopt a more simple
method i.e. a selected α-peak, located just above Tg

4
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Figure 4. Left panel (a) dielectric loss spectra at T = 373.15 K during physical aging; right panel (b) dielectric loss (normalized by the loss at
tag = 0 s) versus aging time for three fixed frequencies. Normalized ε′′ decreases were fitted to the equation (1). All curves can be described
by the same time constant τag, irrespective of the chosen frequency [11].

(T = 407.15 K), was shifted horizontally to the temperatures
below Tg so that its high frequency side superimposes with the
low frequency side of spectra collected below Tg. Obviously,
this operation required the assumption that the shape of the
structural relaxation peak does not change much below Tg and
the time–temperature superposition (TTS) is valid above and
below Tg. The values of relaxation times τα−sup, obtained
in this way, plotted versus 1/T are shown in figure 5 (gray
triangles). Nevertheless, it is worth mentioning that this
procedure gives reliable values of structural relaxation times
(for T < Tg), but only in the vicinity of the glass transition,
where the evolution of the glassy system towards equilibrium is
quite fast. This situation is very different at lower temperatures
where the system evaluates slower. Thus, the relaxation times
τα−sup obtained, as well as βKWW = 0.61 assumed deep in the
glassy state, are subject to uncertainty.

Finally, the values of τag, τα−sup and T0 = 317.81 K [12]
all indicate that the timescale of molecular motion involved
with the α-relaxation at room temperature probably exceeds
years.

3.2. α-relaxation times in the glassy state calculated by the
coupling model

Using the coupling model (CM) approach (equations (2)
and (3)) we can calculate τCM

α of TEL in the glassy state
from the known values of τβ . The calculation requires the
coupling parameter n or its complement (1 − n) ≡ βKWW in
the glassy state, which cannot be directly determined because

τα is too long. One choice is to use the same value of
βKWW = 0.61 determined by fitting the isothermal loss spectra
at T � 409.15 K. In doing so, the assumption is made that the
frequency dispersion of the α-relaxation does not change for
T < Tg = 400.3 K. The results presented in the relaxation
map of TEL (figure 5, open green up triangles) show τCM

α

substantially underestimates τag. However, before taking this
glaring disagreement seriously, one must reconsider the fact
that CM only predicts approximate agreement between the
primitive relaxation time τ0 and a characteristic relaxation time
of the β-relaxation τβ . In other glassformers which have a
well resolved JG β-loss peak above Tg, the width of the β-
loss peak is usually not very broad. In these cases, τβ can
be taken to be 1/2π fp, where fp is the frequency of peak
maximum. However, the situation is different for TEL. Even
above Tg, the β-relaxation appears as a very broad shoulder
(see figure 1(a)). Below Tg, the width of the β-loss peak
is even larger. The values of τ0 used to calculate τCM

α were
taken to be τβ , plotted in figure 5, and τβ ≡ 1/2π fp, where
fp is the frequency of the peak maximum. If f̂p is taken
to be 1.7 decades lower than fp, one can estimate from the
flat loss β-loss peaks in figure 1(b) that ε′′( f̂p) is only about
10% less than ε′′( fp). Thus, this choice of f̂p is as valid as
fp to stand for the characteristic β-relaxation frequency fβ ,
and τ̂β ≡ 1/(2π f̂p) for the corresponding characteristic β-
relaxation time. If we take τ0 = τ̂β (figure 5, black closed
squares), together with the assumed βKWW = 0.61, to calculate
τ̂CM
α by equations (2), there is now good agreement between

5
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Figure 5. Relaxation map of TEL. The temperature dependence of
τα above Tg was described by two VFTH equations. The relaxation
times of the α-process in the glassy state were estimated in two
different ways: by a horizontal shift of the α-peak from the region
above Tg to temperatures below Tg(τα−sup), and by using aging
induced changes in the JG relaxation in accordance with [7] (τag).
The structural relaxation times τCM

α shown by open green up triangles
are calculated using CM with βKWW = 0.61, and τβ ≡ 1/(2π fp)
represented by closed green up triangles, where fp is the peak
frequency of the β-loss peak in figure 1(b). The temperature
dependence of τβ(T ) is Arrhenius below Tg but changes to a stronger
T -dependence above Tg. The structural relaxation times τ̂CM

α shown
by open black squares are calculated using CM with βKWW = 0.61,
and τ̂β ≡ 1/(2π f̂p) represented by closed black squares, where f̂p is
1.7 decades lower than fp.

τ̂CM
α and τag (see figure 5, open black squares). On the other

hand, had we used f̂p, which is 1.7 decades not lower but
higher than the fp, to calculate τ̂β , the value of structural
relaxation time obtained from the CM formula τCM

α would
become so short that it is absurd for a structural relaxation time
in the glassy state. If one insists that τ0 be taken the same as
τβ ≡ 1/2π fp, then there is serious inconsistency between the
values of the calculated τCM

α and the observed aging time τag.
However, one also has to bear in mind the large uncertainty in
identifying the characteristic β-relaxation time for TEL from
the very broad maximum of the β-peak, the fact that the CM
only predicts an order of magnitude agreement between τ0 and
the characteristic β-relaxation time, and the possible increase
of the coupling parameter n upon aging instead of the assumed
constant value from βKWW = 0.61 used for the comparison.
The last point is cogent in the present case, since τag shifts
to longer times on aging but τβ does not, and this requires an
increase of n in order to be consistent with the CM equation.

3.3. The change of representation from susceptibility to
electric modulus

As shown in the previous section, due to the very broad
flat maximum of the β-loss peak, the identification of a
characteristic β-relaxation time with the primitive relaxation
time poses a problem. So far, all isothermal and aging
data have been presented as a complex susceptibility ε∗( f ),

which is of course a standard and appropriate representation.
However, in this section we explore the same data and analysis
in terms of the complex electric modulus, M∗( f ) ≡ 1/ε∗( f ).
It enable us to demonstrate another point of view on the overall
situation associated with determination of structural relaxation
times in TEL and stress some essential differences between
presentation of same dielectric data in various representations,
especially in the case of materials with large dielectric strength,
as in the present case of TEL.

Dielectric susceptibility and electric modulus formalisms
reflect two alternative ways for the description of dielectric
phenomena. In the first one, time-dependent variation of
dielectric displacement vector D, under constant electric field
E, is recorded [20], while for the second one the constraint of
a constant dielectric displacement D is applied and variation
of the electric field E with time is recorded [20]. It is
worthwhile stressing that ε∗(ω) as well as M∗(ω) reflect
the same dynamics of orientational polarization of permanent
dipoles [21], albeit under different E and D conditions.

The electric modulus representation is practically used
only for describing ion dynamics, particularly in ionic
conductors [22, 23]. A review of the electric modulus
representation, and answers to criticism of its usage can be
found in [24]. Before using the electric modulus formalism
here, let us re-examine the dielectric permittivity function,
which is often called the ‘dielectric relaxation function’. It
actually describes, not dielectric relaxation, but retardation of
the buildup of the condenser charge after a step potential is
applied, while the electric modulus function directly refers
to the dielectric relaxation of the condenser potential after
the application of a step charge [25–28]. It is also worth
noting that relaxation is in general faster than retardation,
i.e. the decay of the electric modulus response function φM (t)
takes less time than the time-dependent permittivity response
function φε(t) [25, 26]. As a result, for a simple Debye-type
relaxation at fixed temperature the characteristic relaxation
time τM is faster than the retardation time τε , in accordance
with following equation

τM

(
εs

ε∞

)
= τε (5)

where εs and ε∞ are dielectric constants in the limits of low
and high frequency, respectively. In particular, for a non-
Debye distribution of relaxation times the difference between
τM and τε become even more pronounced, and the effect on the
dispersion of the relaxation–retardation timescale ratio should
also be taken into account [27].

To demonstrate how the ratio of dielectric constants ε∞
εs

influences the shape and characteristic relaxation time during
switching from one representation to another, we present
some simultaneously generated relaxation peaks with different
dielectric strength. For example, for a polar liquid with
dielectric strength equal to 7 (εs = 8, ε∞ = 1) and 4 (εs =
5, ε∞ = 1), the Cole–Davidson-type relaxation function

ε∗(ω) = ε∞ + εs − ε∞
[1 + (iωτε)α]β , α = 1, β = 0.5 (6)

6
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Figure 6. Plots of the imaginary part of dielectric permittivity/modulus versus frequency for a CD-type dielectric function, generated for
various different dielectric strength �ε = 7 (a), �ε = 4 (b), �ε = 1 (c) and �ε = 0.1 (d). The ε′′(ω) curves were transformed to electric
modulus M ′′(ω). The greater the dielectric strength, the more the relaxation peak in M ′′(ω) shifts to a faster response, becoming broader and
smaller compared to the CD case.

generated in the susceptibility representation and later
transformed to the electric modulus representation, becomes
much smaller but broader, and its relaxation time τM is shifted
more than 1 decade (for �ε = 4) and 2 decades (for
�ε = 7) towards a faster response relative to the CD case
(see figures 6(a) and (b)). However, for a system with very
low dielectric strength, these differences become considerably
smaller or even negligible (figures 6(c) and (d)).

From this simple exercise it is clearly seen that for
materials with small dielectric strength the two choices of
representation (susceptibility or electric modulus) do not bring
significant changes in the shape and position of the dipolar
relaxation peak. However, for highly polar systems we
may expect substantial differences between the shape and the
position of the relaxation peak in the two representations.
Furthermore, it is worth mentioning that the change of
representation does not change the power-law behavior on the
sides of the loss peaks.

We have transformed the ε∗( f ) data of TEL to M∗( f ),
which is simply the reciprocal of ε∗( f ), i.e.

M∗( f ) = 1/ε∗( f ). (7)

Similar to the effects seen in the simulation, the α-loss peak in
the M ′′( f ) spectra is shifted to higher frequencies and becomes

Figure 7. Frequency dependence of the imaginary part of the electric
modulus of TEL for various temperatures above Tg.

smaller and broader. This is demonstrated in figure 7 when
compared with the data of ε′′( f ) at the same temperatures
presented in figure 1. Similarly, in the M ′′( f ) spectra, the
structural relaxation peak moves towards lower frequencies
with decreasing temperature. In the modulus representation,

7
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Figure 8. Frequency dependence of the imaginary part of the electric
modulus at 405 K under atmospheric pressure. The arrow indicates
the location of the calculated frequency f0 of the primitive process.

the translational motion of ions appear as the Debye peak,
whereas the α-peak is shifted about 2 decades to higher
frequencies still corresponding to the orientational relaxation
of molecules.

To describe the non-exponential character of molecular
relaxation by the KWW function, a smaller stretching
parameter (βKWW−M = 0.51) has to be used to fit the
M ′′ α-loss peak. It is noticeable that the power-law
behavior described by the stretching parameter βKWW−M

agrees with that given by the HN function in the susceptibility
representation (βHN ≈ 0.5). Furthermore, it is worth pointing
out that at the same temperature the KWW function fits
the α-loss peak at higher frequencies better in the modulus
representation than in the susceptibility representation. Using
equation (2) with τα−M = 0.41 s and βKWW−M = 0.51,
the location of the calculated primitive frequency f0 in the
modulus formalism is indicated by the vertical arrow in
figure 8. This is to be compared with its location in the
susceptibility representation and its relation to the shoulder
contributed by the β-process shown in figure 3. At the same
temperature (405 K), the same data presented in the modulus
formalism has the primitive frequency clearly lying within the
β-peak, which makes it easier to identify the nature of the β-
relaxation.

3.4. Analyzing data of the aging experiment in the modulus
representation

Returning to the data obtained in the aging experiment, we
make an attempt to analyze them in terms of the imaginary
part of electric modulus M ′′( f̃ , tag) of TEL and its change with
aging time tag. For three fixed frequencies we plot M ′′( f̃ , tag)

dependences normalized by the factor M ′′( f̃ , tag = 0) as
shown in figure 9. Similarly, to fit the aging data we used
equation (1), but modified it for the modulus data. It has

Figure 9. The normalized imaginary part of the electric modulus
versus aging time for three different frequencies. The decrease of M ′′
was fitted to equation (8) with fixed βKWW−M = 0.51 (solid black
lines). All three curves can be described with the same time constant
τag, irrespective of the chosen frequency.

the form,

M ′′( f̃ , tag)

M ′′( f̃ , tag=0)
=

{
�M ′′( f̃ , tag)

× exp

[
− tag

τag

]βag

+ M ′′
eq( f̃ )

}/
M ′′( f̃ , tag=0), (8)

where M ′′
eq( f̃ ) ≡ M ′′( f̃ , tag → ∞) is an equilibrium value,

�M ′′( f̃ , tag) = M ′′( f̃ , tag = 0) − M ′′
eq is the change of M ′′

during aging, βag is the stretched exponent (βag(T < Tg) =
βKWW−M (T > Tg)), and τag is the aging time constant. The
best fits of equation (8) are displayed in figure 9 as solid black
lines. It can be seen from figure 9 that fitting functions with
the fixed value of βKWW−M = 0.51 give better fits than for the
same data in the susceptibility representation with βKWW =
0.61 (see figure 4). Here again, irrespective of the chosen
frequency, we get almost the same τag. The same analyses were
also made for three other temperatures. The values of τag(1/T )

are shown in the relaxation map of TEL constructed for the
modulus data (figure 10—red triangles). The corresponding
τag are only slightly different from those obtained for ε′′( f̃ , tag)

dependences. All other relaxation times are also from the
analyses of data in the modulus representation.

When considering aging experiments investigating the
imaginary parts of the dielectric permittivity ε′′ and dielectric
modulus M ′′, it is worth recalling measurements performed
a few years ago by Lunkenheimer et al [29–31], in which
several glass-forming liquids, such as PC, CKN, xylitol or
glycerol, were aged. Their studies were limited only to the
temperature region just below Tg, where in addition the β-
relaxation was partly/completely covered by the α-relaxation.
This is completely unlike our case, since the aging we carried
out was in a region where the β-relaxation was well-separated
from the structural relaxation time. What is worth noting is that
Lunkenheimer and co-workers make an effort to analyze the

8
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Figure 10. Temperature dependence of α- and β-relaxation times of TEL obtained from frequency dependences of the imaginary part of the
electric modulus, along with the aging decay time τag, τα−M sup and τCM

α−M calculated from the CM (with βKWW−M = 0.51) in the glassy state.

aging data of ionically conducting CKN in the susceptibility
as well as modulus representation. In the M ′′ spectra, due
to a large decoupling effect, the peak was aged, while in the
ε′′ spectra the dc-conductivity was strongly influenced. Their
studies revealed that the aging dynamics, irrespective of the
chosen representation, show the same time dependence during
aging, governed by the structural relaxation time and the same
heterogeneity as in equilibrium [31].

It is obvious that the structure of glass depends on the
aging time. However, in the temperature region close to
Tg the change of τag with time is considerable higher than
far below Tg, where it can be negligible. Because, in the
vicinity of the glass transition, for the structure of glass
evaluated towards equilibrium relatively fast, Lunkenheimer
et al observed significant deviations (unlike in our case)
between the values of τag and the equilibrium data.

3.5. Calculation of the α-relaxation times in the glassy state
by the coupling model

Similar to before in using the prediction of the CM, we
calculated τα−M from τβ in the glassy state. In the calculation
we assumed that βKWW−M at temperatures below Tg has the
same value as at 405.15 K close to the Tg i.e. βKWW−M = 0.51.
The results obtained are displayed in the relaxation map of
TEL (figure 10—violet stars), where all the data are from the
modulus representation. The values of τα−M in the glassy state,

calculated from the CM and shown in figure 10, are in a good
agreement with τag from the aging experiment.

Currently, the CM is commonly applied to describe
successfully the dynamics of molecular supercooled liquids
and also of ions in ionic conductors, using the susceptibility
representation of data in the former case and the electric
modulus representation in the latter case. This is possible
because the CM is applicable independent of whether the
correlation function is a relaxation function φrel or a retardation
function φret. However, as shown in this paper, for very polar
molecular glassformers such as TEL, φrel and φret from the
same data differ in the width of dispersion. Nevertheless, the
primitive relaxation time/frequency calculated from the CM
for both cases are consistent with that of the β-relaxation
from experiment. Is it possible that the β-relaxation is also
changed in going from the susceptibility representation to the
modulus representation to maintain consistency with the CM
predication? Further investigation is needed to understand
whether this is not happenstance.

Finally, since crystallization from the amorphous state
is often linked to the molecular mobility associated with
structural relaxation, the results of this paper are important for
the prediction of the stability of amorphous pharmaceuticals.
It is commonly believed that stabilization of amorphous
pharmaceuticals can be achieved by storage at a temperature
where the molecular mobility associated with the instability of
glass is negligible. At this temperature the structural relaxation

9
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times would exceed years. For a pharmaceutical scientist,
it seems to be necessary to have some useful tool allowing
the probing of α-relaxation times in the glassy state. This
can be achieved by using the approach pioneered by CR,
which in a very simply way provides reliable information about
the timescale of structural relaxation below Tg. For TEL,
the timescale of the α-relaxation peak in the glassy state at
room temperature most probably exceeds years. Thus, the
molecular mobility associated with structural relaxation would
be negligible in causing crystallization during typical storage
at room temperature, and TEL should remain physically and
chemically stable, over a prolonged period of time and a shelf-
life of years.

4. Summary

To provide information about the timescale of structural
relaxation deep in the glassy state of TEL, we applied a new
approach suggested by Casalini and Roland. The analysis of
aging induced changes in β-relaxation enables us to predict α-
relaxation times in the region inaccessible to standard dielectric
techniques. There is an alternative method to determine the
structural relaxation times in the glassy state of TEL. This
method involves shifting horizontally the α-loss peak observed
near, but above Tg, to overlap the spectra collected below
Tg. The structural relaxation time τα−sup in the glassy state,
determined by this method, is in good agreement with that
obtained by analyzing the aging data.

Furthermore, we calculate τα from τβ in the glassy state
by using the CM relation (equations (2)). A large uncertainty
cannot be avoided in picking where the characteristic
relaxation time of the JG β-relaxation occurs because the β-
loss peak in the ε′′( f ) spectra is very broad. Within this
uncertainty, there is consistency between the α-relaxation time
calculated by the CM equation and that deduced from the aging
data.

We also made another attempt to analyze the aging sus-
ceptibility data in terms of the electric modulus representation.
The results obtained for τag in the modulus representation
are similar to those in the susceptibility representation, but
the fitting function with the fixed value of βKWW−M = 0.51
gives a better fit than for the same data in the susceptibility
representation with (βKWW = 0.61). In the electric modulus
representation, the α-relaxation calculated from the CM
equation agrees with τα−sup and τag in the glassy state of TEL.

We also highlight that, for the same data presented in
different types of representation, the shape and the peak
position might differ significantly when considering materials
with a large value of dielectric strength. In less polar
glassformers, where the ratio εs/ε∞ is not large, the shape and
position the of dipolar relaxation peak is not much different
for the same data in either the susceptibility or the modulus
representation. This is the case for PVE, which has �ε ≈
0.13 [32]. However in polar glassformers with a large εs/ε∞,
such as TEL, the shape and the position of the relaxation
peaks are quite different. More study is needed to clarify the
difference in spectral shape found in highly polar glassformers
of the α-relaxation, as well as the relationship between the

α- and the β-relaxation, in the susceptibility versus modulus
representation.
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